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Abstract— Power system protection and asset management present persistent technical challenges, particularly in the context of 

the smart grid and renewable energy sectors. This paper aims to address these challenges by providing a comprehensive assessment 

of machine learning applications for effective asset management in power systems. The study focuses on the increasing demand 

for energy production while maintaining environmental sustainability and efficiency. By harnessing the power of modern 

technologies such as Artificial Intelligence (AI), machine learning (ML), and Deep Learning (DL), this research explores how ML 

techniques can be leveraged as powerful tools for the power industry. By showcasing practical applications and success stories, 

this paper demonstrates the growing acceptance of machine learning as a significant technology for current and future business 

needs in the power sector. Additionally, the study examines the barriers and difficulties of large-scale ML deployment in practical 

settings while exploring potential opportunities for these tactics. Through this overview, we provide insights into the transformative 

potential of ML in shaping the future of power system asset management. 

 

 
Index Terms— Power System, Asset Management (AM), Artificial Intelligence (AI), Machine Learning (ML), Renewable Energy 

Source (RES), Grid, and Electricity Generation.  

I. INTRODUCTION 

Nowadays, technological advancements, governmental mandates for regulatory policy, and environmental concerns all contribute 

to the ongoing evolution of contemporary power systems. They are currently operating near their nominal ratings, necessitating 

the availability of control schemes, effective monitoring frameworks, and quick protection countermeasures to sustain secure 

operations. Power transmission generators, substations, transmission lines, and distribution channels are costly assets [1-3] with 

prolonged manufacturing/installation procedures. Recent modifications to power systems have significantly impacted the energy 

sector, not just in terms of technical characteristics but also in the context of managerial features. Implementing new generation 

systems [4, 5], constructing lines for transmission and distribution, and building substations have recently proven challenging for 

utilities due to economic and environmental constraints. This fact means that machinery will need to be utilized for a more extended 
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period, close to their operating limits, and towards the end of their useful lives [6]. Consequently, organizations in the electric 

sector will be required to deploy advanced management and control systems for the manufacturing equipment and elements of the 

power system. 

 The utilities have made effective asset management their primary concern. Making efforts to construct and maintain plants at 

a suitable level of investment and quality can help to increase profitability and durability. The primary objective of asset 

management is to strike a balance between operating and capital costs to provide the highest possible value for shareholders and 

power users. The challenge has become more complex, with the cost of new and replacement plants soaring out of control. To 

solve the issue and consider the particular business procedures involved in building and operating plants, most utilities adopt 

automation. 

 AM goal is to manage physical assets in the best possible way to achieve an organization's goal while considering risk. The 

goal could be to maximize the value of assets, improve benefits, or reduce the lifespan cost, and the risk may be defined as the 

probability that an incident will occur and have a negative impact, such as cutting off customers' access to power. Electricity is 

essential for the industrial revolution since it allowed lighting and transportation. The electronic society of today relies heavily on 

power. Returning to using electricity for transportation is a trend that will make it feasible to use renewable fuels. 

According to the indications of AM, network deployment, and system operation, the optimal level of dependability, asset 

lifecycle, and cost management have typically been found [7, 8]. According to the perception of system engineering, AM is mainly 

utilized to increase marketing strategy, good earnings, strong credibility, and reduced costs. By adhering to the AM lifecycle's 

management discipline strategy, these variables can be provided in applications for the power system. While doing operation 

maintenance, repairing components, and discovering faults, it is crucial to choose the correct option [9]. The AM process is the 

most effective approach to raising the productivity of industrial goods in power systems. Driven by technology advancements, 

regulatory mandates, and concerns about the environment and the climate, modern power systems are still developing [10]. The 

planning, selection, assessment, and asset migration sequence can also characterize AM. Yet, the most difficult duties included in 

AM techniques are determining the component's lifetime, estimating management costs, assessing its quality, and executing 

flawless maintenance [11, 12]. The technological, economic, and strategic evaluations must be met to increase the value of AM 

systems. In power systems, maximizing asset performance is usually one of the most important factors. 

The contributions of this specific paper are,  

• To examine the principles and methods of various ML approaches applied to enhance the effectiveness of AM in power 

systems. 

• A variety of performance measures should be used to confirm the efficacy of supervised and unsupervised ML models 

used for AM. 

• To evaluate the difficulties and manage the AM techniques based on technical and economic considerations.  

• To thoroughly analyze the ML models with their unique benefits and drawbacks. 

 

Also, it aims to identify and discuss the challenges and shortcomings inherent in previous studies related to asset management 

within electric power and energy systems. While these studies have laid a solid foundation, there remains a gap in integrating 

machine learning approaches with a comprehensive consideration for data integrity, regulatory standards, and environmental 

sustainability. 

The remaining sections of this paper are as follows: The AM overview and several ML techniques used to enhance AM strategies 

in the power system networks are presented in Section 2. The detailed examination of the various ML techniques utilized in power 

system applications is illustrated in Section 3, along with their difficulties, benefits, and drawbacks. In Section IV, the overall study 

is summarized together with the results and upcoming examples. 

II. RELATED WORKS 

This section looks into various methods and technology for effective AM on networks of power systems. AM is one of the main 

factors that typically offers information on protection devices, power systems, transmission systems, and support systems. Because 

of these factors, it is crucial to the industries that deal with the energy distribution. The electric grid represents a complex ecosystem 

encompassing asset owners, manufacturers, service providers, and government officials. As the energy industry embraces digital 

transformation, substantial investments are being made across all production, generation, transmission, and distribution levels. 

This transformation is fueled by cutting-edge technologies, such as sensors, data analytics, privacy-aware markets, and smart 

meters, which enable the realization of smart grid solutions. These advancements, facilitated by two-way communication 

technologies, control systems, and powerful computer processing, aim to modernize the grid and enhance its intelligence and 

resilience. However, the existing electric infrastructure faces challenges, as it is being tasked with functionalities beyond its original 

design. As part of the energy transition objectives, developing smart power grids necessitates meeting new functional requirements 

that some legacy energy distribution assets may not fulfill. Equipment obsolescence, aging components, and evolving technological 

standards may induce premature replacements, driving up costs and posing environmental concerns. Adopting Asset Management 

(AM) becomes imperative to address these challenges and unlock the electric power system's potential. AM, a concept widely 

utilized in both the financial and engineering sectors, involves coordinated activities to realize value from assets. For the electric 
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power system, which is a critical enabler for the transition to a sustainable and intelligent energy system (Smart Grid or SG), 

effective AM practices can optimize the utilization and lifespan of equipment. Moreover, the Reliability Centered Maintenance 

(RCM) method emerges as a structured approach focusing on reliability when formulating maintenance plans. Originating in the 

commercial aviation industry in 1978, the RCM method addresses the need to enhance reliability while managing maintenance 

costs. Reliability and maintenance are of utmost importance in the electric power system context due to significant associated costs 

and potential production losses or breakdowns that can impact the environment and personal safety. In this research, the focus is 

on presenting the Reliability Centered Asset Maintenance (RCAM) method. Building on the proven RCM principles, the RCAM 

method integrates quantitative maintenance optimization techniques. Originally designed for electric power distribution systems 

by Bertling in 2002, the RCAM method demonstrates promising results for maintenance strategy selection and optimization of 

wind turbines. The application of advanced Artificial Intelligence (AI) technologies, such as machine learning, within AM and 

RCAM can provide a significant competitive advantage. AI-driven algorithms can process vast datasets, enable predictive 

maintenance, and identify patterns and anomalies that human-driven approaches may overlook. By harnessing the potential of AI 

in AM and RCAM, the electric power system can achieve higher levels of reliability, efficiency, and sustainability, ultimately 

supporting the transition towards a more innovative and resilient energy landscape. 

 Koksal and Ozdemir [13] proposed a reliability-centered (RCM) AM approach to create the power transformer's maintenance 

plan. In this work, a Markov model has been used to assess the dependability and cost of transformers and offer the best solutions. 

Also, a sensitive examination of the transition rate has been completed, and the lifetime of transformers is calculated using data 

from real service. The authors thoroughly analyzed the various AM strategies applied to power distribution/transmission systems 

in [14]. The AM approach is divided into time- and activity-based groups based on how distribution networks are planned and 

operated. For examining the effects of data quality in power systems, Koziel et al created a ground-breaking AM methodology. 

The key steps of the AM system, including maintenance and replacement, are explained in this study. Based on the findings of this 

paper [15], it is determined that asset managers must assess the effects of each device with regard to the reliability of the assessment. 

Babu, et al [16] analyzed various controlling strategies used in a hybrid energy storage systems. The key benefits of using hybrid 

sources are reduced initial cost, better system efficacy, minimized stress, and better storage capacity. Moreover, the controlling 

techniques used for hybrid energy systems are categorized into the types of classical controlling models and intelligent controlling 

models. Duchesne, et al [17] reviewed recent works and developments in ML models for improving AM in power systems. Cao, 

et al [18] examined the different reinforcement learning approach for enhancing the AM of modern power systems. Many control 

and optimization issues in power systems involve typical hierarchical structures and human decision-making. Another interesting 

method for controlling extensive systems is using hierarchical frameworks, which can lower the deployment costs of 

communication devices and eliminate the isolation problem. Applications of RL for hierarchical control are uncommon in power 

systems due to the complexity of the hierarchical structure and the absence of a standard hierarchical framework. Future studies 

might use a hierarchical control framework based on reinforcement learning for complex systems. Modern power systems [19, 20] 

are getting larger, more sophisticated, and have more operating conditions & controlling options. Single-agent reinforcement 

learning algorithms use centralized frameworks that primarily rely on uninterrupted transmission lines, making them unable to 

scale up to huge systems or handle communication delays. 

 Tang, et al [21] employed a knowledge graph methodology for developing an effective power AM framework. This study 

suggests a method for building power equipment knowledge graphs by combining existing multi-source heterogeneous power 

equipment-related data. This study uses different types of heterogeneous data sources [22], like equipment operation records, 

equipment inspection records, equipment parameters, manufacturer information, operator information, equipment parameters, 

manufacturer information, operator information, equipment operation regulations, and other related information. Due to the 

shortcomings of the current AM system, there is insufficient data sharing between equipment manufacturing businesses and power 

providers, which leads to low data utilization efficiency. Bosisio, et al [23] developed a new meta-modal for multi-AM systems 

for electric distribution networks. While making operational and strategic decisions, a utility AM system is utilized to store, 

maintain, and support asset data. Although it has always been a crucial factor for utilities, managing distribution assets is now 

getting more attention as they aim to strengthen their business models in a changing sector and maximize the lifespan of new and 

current asset investments. Regulations, network complexity, consumption patterns, and budgetary control are a few of the key 

issues affecting power AM techniques [24]. Effective AM strategies are built on a solid meta-model. It divides the AM strategies 

for the power transmission sector into three-time frames: short-, mid-, and long-term. Operational concerns are dealt with in short-

term AM; system device maintenance in mid-term AM [25]; and distribution system strategic planning in long-term AM. To 

achieve the desired levels of service reliability, AM for long-term planning is necessary, along with the identification of asset 

upgrade and development plans. For distribution networks operating radially, the least reliable equipment already in the system 

typically determines the efficiency [26]. As a result, decision-making processes used in planning the energy distribution system 

should evaluate the viability and effectiveness of the system's resources. A multi-utility can manage several asset kinds and 

associated parameters in its asset portfolio by specifying assets. In order to generate object libraries, the asset's parameters are then 

categorized into classes. Besides that, during each stage of the distribution network management process, the associated libraries 

are utilized to represent the assets.  The identification of the asset's views makes it easier to identify the parameters.  
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III. ASSET MANAGEMENT 

The electric power sector is changing and putting a lot of strain on transmission and distribution assets, which has given rise 

to AM in the power system. AM [27, 28] is seen as one of the most crucial functions in developing and operating today's 

transmission and distribution systems. Electric utilities have been pushed to find the best ways to manage installed capacity while 

minimizing the cost of current components throughout their useful lives by a tendency to increase power system reliability. In 

order to achieve the best outcomes, researchers separate the operations of the power system into three key stages. 

• Grid enlargement 

• AM 

• System operation and maintenance 

Frequently, the phrase "asset" refers to something used in various settings, such as a model, design, system software, piece of 

instruction, or verification code. Data analysts and computational experts frequently use the term "artifact" to refer to various 

resources needed for model construction. Due to the experimental nature of ML [29], which necessitates preserving artifacts for 

later use, these artifacts qualify as assets in this context. Compared to the engineering of systems using ML, traditional software 

engineering frequently has fewer asset categories because it focuses exclusively on source code assets. For instance, datasets, 

algorithms, model parameters, and indicators for model evaluation are other fact categories included in ML. It is appealing to use 

conventional software engineering methods in the state of the art to solve some of the issues with AM [30] that have been 

highlighted. Also, explicit management tools and procedures are used to gather, arrange, and manage assets during model 

construction and after creation, which helps to resolve various AM difficulties. In this context, AM is defined as a crucial discipline 

that helps with the engineering of ML experiments and systems [31]. The objectives of AM are to enhance maintenance schedules, 

optimize asset life cycles, and develop successful marketing plans for the acquisition of fresh assets. This can be accomplished by 

creating better information management systems that support data analysis tools, preservation, and retrieval. Moreover, predictive 

maintenance, network maintenance, procurement and asset tracking, forecasting, and decision-making are some of the outputs of 

these technologies. The AM system [32] is generally classified into three types such as, 

1. Time based 

2. Activity-based 

The time-based AM models [33-35] are split into short-term, mid-term, and long-term categories. Similarly, the activity-based AM 

is categorized into technical, economic, and societal types. The primary benefits of using the time-based models are lowering 

operation costs for serving customers in a competitive environment, optimizing the allocation of volatile and finite natural resources 

for leveraging company assets, prolonging the useful life of assets through proper maintenance and operation timeframes, and 

raising investment costs for the creation of fresh assets. Fig 1 shows the primary stages involved in the ML model.  
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Fig 1. Stages of working in ML model 

IV. ML MODELS USED FOR AM IN POWER SYSTEMS 

ML [36, 37] is a kind of data analytics method that aims to teach computers to do tasks similar to those performed by humans 

and animals based on a learning process. Instead of predetermined equations, ML algorithms [38-40] can directly "learn" 

information from the given data using computational techniques. They can also improve themselves adaptively as more data 

becomes available. ML analyses can use guidelines and several algorithms to produce conclusions and accurate predictions. ML 

must be carefully designed and programmed to accomplish various capabilities, such as classification, sorting, and analysis. ML 

and deep learning [41, 42] as a specialized field have shown promise in numerous fields of engineering and study during the past 

ten years. Moreover, the ML techniques [17, 43] are categorized into the following types: 

1. Supervised learning 

2. Unsupervised learning 

3. Reinforced learning 

4. Ensemble learning 

The goal of supervised learning [44, 45] is to discover a mapping between inputs and outputs using a labeled set of input/output 

pairs in a training set with a large number of training samples. Unsupervised learning is a subset of ML paradigm, in which an 

algorithm is trained using data that has neither been classed nor given a label so that the system can group the data based on how 

similar or different it is. Typically, the unsupervised learning algorithms [46] are more unpredictable than other natural learning 

techniques and can handle more sophisticated tasks better than supervised learning algorithms. Cluster analysis is one of the most 

popular unsupervised learning techniques, which involves discovering hidden patterns or groups in data during exploratory data 

analysis. Furthermore, Reinforcement Learning (RL) is a type of learning [47] in which an agent connects with its surroundings 

and adapts its behavior in response to the stimuli it receives. The RL is distinct from supervised learning in that it does not call for 

labeled input/output pairings; instead, the agent is awarded or docked based on how it behaves in the environment. Hence, RL [7, 

48] enables the agent to autonomously determine behaviors that are impossible with supervised or unsupervised learning. 

Compared to a single ML algorithm, an ensemble of methods is more effective, using multiple ML algorithms to enhance the 

prediction performance. In contrast to individual-based learners, ensemble learning creates a group of hypotheses that are combined 

and utilized to resolve a single problem. In the paper [49], a hierarchical deep learning machine is applied to predict the transient 

stability of the power systems. This paper validates the computational effectiveness of various deep learning algorithms in terms 
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of processing time, response time, computational complexity, and memory usage. A Back-Propagation Artificial Neural Network 

(BP-ANN) technique was used by Trappey et al. [50] to create an intellectual AM system. This work's primary objective is to 

assess transformer problems under various operating circumstances. Here, using a feature selection technique based on Principle 

Component Analysis (PCA) decreases the number of important components. Fig 2 shows the typical model of the ML framework 

used in the power system applications. The electric power system is being updated to support a sustainable energy system [51]. As 

an integrated energy system component, the generation, delivery, and use of electricity present both opportunities and challenges. 

This entails updating current power infrastructures and new types of electricity usage, such as demand response and mobility. The 

power generation trend is toward new, small-scale, and large-scale advancements, such as offshore wind turbines and roofing solar 

panels. As society becomes more digitalized, new options for automation and control, as well as new business models and energy-

related services, are being created. New options for measurement and control are the general trend for technological advancements. 

As an illustration, consider Phasor Measurements Units (PMUs), which can monitor voltage and current up to 30-120 times per 

second and are typically found in the transmission network. Others include smart meters installed at the consumer's home, which 

allow for the integration of home-scale power generation from solar panels, energy storage from electric vehicles, and general 

distributed control of energy use. The development of diagnostic assessment techniques for evaluating the insulation quality and 

estimating the useful life of physical assets and innovative approaches for condition monitoring, such as employing sensor 

networks, are two further trends. The general growth of these several tendencies is toward the handling and analysis of massive 

volumes of data, and another idea gaining popularity is referred to as "Big Data," which offers new tools for infrastructure asset 

management. 

 

 

 

 
Fig 2. ML framework in power system 

A. Support Vector Machine (SVM) 

Support Vector Machines (SVMs) are crucial to learning theory [52]. They work rather well for a lot of scientific and 

engineering applications, especially when it comes to classification problems. Among these techniques, Support Vector Machines 

(SVM) are among the most widely used to improve the expected result. SVM's outstanding prediction accuracy, optimal judgment, 

and discriminative capabilities have recently piqued the interest of data analysis, information processing, and machine learning 

communities [53]. Furthermore, the SVM outperforms other supervised learning strategies in real-world binary classification 

problems, demonstrating its strength. The decision functions are automatically produced from learning data using SVM to 

maximize the margin (distance) between decision borders in a big region known as the subspace. To put it another way, there are 

significant differences between SVMs and the classification capabilities of other techniques, mainly when there are few input data 

points. This classification approach decreases the training data's prediction error, and a better generalization performance is 

obtained. SVMs [54] are a powerful tool for data classification and predictive analysis. During the learning phase, SVMs get a 
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subset of support vectors, which is frequently a tiny percentage of the original data set. This tiny bit of data creates a set of support 

vectors reflecting a particular classification issue. It specializes in processing numerical data and making well-suited choices for 

continuous monitoring variables such as voltage levels, temperature, and pressure, commonly found in asset management 

scenarios. Fig. 3 displays the hyperplane separation model of the SVM approach. 

 

 
Fig 3. Separation of hyperplane in SVM 

 

B. Naïve Bayes (NB) 

The construction and analysis of massive data can be done using the NB model [55]. This technique is an extremely smart and 

simple classification system that excels even in challenging situations. It is a straightforward probability classifier that determines 

a set of probabilities by estimating the frequency and variations of values found in a particular data set. By considering the value 

of the class variable, the algorithm applies Bayes' theorem and assumes that all parameters are unbiased.  The method typically 

learns quickly in various controlled classification problems despite this conditional independence assumption being considered 

naive because it is rarely true in real-world applications. Balaraman, et al [56] utilized several ML models for effective AM and 

fault diagnosis. This paper aims to categorize the type of transformer faults based on the prediction result of the classifier. Toubeau, 

et al [57] developed a new data-driven methodology for improving the maintenance activities of grid assets. Moreover, the authors 

used different classification approaches, such as the Bayesian model, SVM, DT, etc., to solve the prediction problem.  

C. Artificial Neural Network (ANN) 

Artificial neural networks are a framework that many machine learning techniques employ to interpret complex input data. 

Artificial neural networks (ANNs), a popular machine learning tool, are modeled after the biological neural network seen in the 

human brain. Feed-forward neural networks, which process inputs from artificial neurons in the layer below and send the weight 

values of each input neuron as output to the layer above, are ANNs that are often utilized. Regression analysis, linearization, and 

prediction are only a few applications for artificial neural networks [58, 59]. As seen in Fig. 4, the fundamental unit of an artificial 

neural network is a neuron that applies a transfer function to the output formulation. The main advantage of ANN models is that 

they are less challenging to deal with in multivariate situations. The backpropagation algorithm is the most frequently used MLP 

training technique. To lower error, this adjusts the weights of the neurons. This model does quite well when learning patterns. 

While the system may readily adapt to new data values, it may show signs of gradual convergence and even reach a local optimum. 

The number of layers and neurons in the hidden layer and their connectivity are important considerations. The artificial neural 

network's performance is heavily reliant on these variables and problems. Any one of these components could drastically change 

the results. Different ANN architectures will yield different results for different problems. However, trial and error is necessary to 

obtain the optimal ANN architecture. Abu-Elanien et al. [49] used a feed-forward artificial neural network to analyze the health 

index-based state of the power transformers. High-risk elements are identified, and the health index is computed using AM mainly 

to extend the life of power transformers. It requires large, diverse datasets that encompass both numerical and categorical data. 

Their strength lies in modeling complex non-linear relationships, making them ideal for forecasting tasks, including energy 

consumption and load patterns. The ability to process a mix of time-series data and static asset characteristics allows ANNs to 

offer comprehensive insights into asset performance and future behavior. 
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Fig 4. ANN architecture 

 

D. Extreme Gradient Boost (XGB) 

XGBoost is a highly scalable ensemble of decision trees based on gradients [60]. By decreasing a loss function, XGBoost 

creates an additive expansion of the decision variables, much as gradient boosting. The ensemble method is the foundation for this 

supervised machine learning algorithm, which enhances the gradient-boosting methodology. Through additive techniques, the 

XGBoost algorithm [61, 62]  constructs an efficient learning model by averaging the predictions of base learners. The XGBoost 

classier solves the overflow problem and maximizes the use of computational resources and is fast and efficient. Regularisation 

and predictive terms can be integrated with the benefits of the objective functions, which are simplified to enable parallel execution 

during the training phase. XGB  performs well with organized, tabular data, particularly excelling in scenarios where feature 

selection is critical to the analysis. It is capable of handling missing values and identifying the most relevant features for models, 

making it invaluable for risk assessment and life-cycle analysis of power system assets, where data can often be incomplete or 

unevenly distributed. 

E. Random Forest (RF) 

As opposed to using a single classifier, ensemble classification methods build a group of classifiers. They then use a vote of 

the predictions from those classifiers to categorize new data points. The set of classifiers with tree structures makes up the Random 

Forest (RF) classifier [63, 64]. It is an improved form of bagging in which randomness has been incorporated. Each node is divided 

using the best split among a subset of predictors that were randomly selected at a certain point, as opposed to using the best split 

across all variables. The original data set is replaced, a new training data set is produced, and a tree is developed using random 

feature selection. This tactic gives unmatched RF precision. Moreover, RF is quick, resistant to overfitting, and allows users to 

build as many trees as desired. Furthermore, RF [63, 65] is a hierarchical grouping of base classifiers with a tree topology. For the 

classifier model, just a few significant attributes are informative. The RF algorithm uses a straightforward predefined probability 

to choose the most crucial considerable property. Breiman [66] developed the RF technique by mapping a random sample of feature 

subspaces to sample data subsets and building multiple decision trees. Fig 5 shows the architecture model of RF.  

 

 
Fig 5. Architecture of RF 

F. Decision Tree (DT) 

With rectangles for the core nodes and oval tracks for the leaf nodes, a decision tree [67] is a tree structure that resembles a 

flowchart. It is the most widely used algorithm because it is easier to create and understand than other classification algorithms. 

Decision tree classifiers attain equivalent, and sometimes even higher, accuracy than other classification algorithms. Decision tree 

implementation can be carried out sequentially or concurrently, depending on the volume of data, the amount of memory that is  

available on the computer resource, and the scalability of the algorithm. Every node in a decision tree [68] represents an attribute, 
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every connection denotes a choice, and every leaf shows the result (continuous or categorical value). Decision trees mimic how 

humans think, making it incredibly simple to collect data and derive insightful conclusions. The goal is to process a single result 

at each tree leaf created by organizing the data in this manner [69]. The decision tree explicitly lists every possible option and 

tracks each one through to completion in a single display to make it easier to compare the many options. Transparency is one of 

the best aspects of the Decision Tree. Another significant advantage is the ability to select the most biassed feature and 

comprehensibility nature [70, 71]. It is also easier to categorize and understand and works better with discrete and continuous data 

sets. Decision trees can efficiently use feature parts and continuous screening for precise prediction results. It offers the flexibility 

to handle both numerical and categorical data efficiently. This characteristic is beneficial for developing decision support tools that 

guide maintenance and operation decisions. The DT architecture model is displayed in Fig. 6. 

 

 

 
Fig 6. DT architecture 

G. Logistic Regression (LR) 

A linear model lays out the connection between one or more independent variables [72, 73] and a dependent predicted value. 

If the labels are known, supervised learning is the phrase used in ML to describe mapping qualitative or quantitative input qualities 

to a target variable that is being intended to be predicted, such as economic, biological, or sociocultural data. Logistic regression 

is one of the most often used linear statistical models for multiple regression. Fig 7 shows the typical architecture model of LR, 

which demonstrates that the LR can predict the output label according to the weight values of the input data.  

 

 
Fig 7. Architecture of LR 

H. Fuzzy Logic (FL) 

The conclusions generated by fuzzy logic are identical to those produced by human vision and reasoning. It has been 

demonstrated that fuzzy logic works effectively in expert systems. The construction of fuzzy sets, which range from 0 to 1, aids in 

deciding whether a member belongs to the set. It is employed when making decisions under ambiguous circumstances. Fuzzy logic 

calculates the problem's degree of confidence, and its algorithms are reliable and flexible enough to adapt to shifting conditions. 

Fuzzy logic was used by Arshad and Islam [74] to enhance the AM procedures in power transformers. An AM strategy is primarily 

used to calculate power transformers' age (retirement/replacement) to reduce failure rates. The aging effect can be calculated during 

this process based on the power transformers' dependability, lifespan, and performance rate. In this case, the fuzzy logic technique 

supports the AM system's dependability, availability, and efficiency. Additionally, it aids in extending life and managing power 

transformers with higher dependability measures. The typical architecture of fuzzy logic is shown in Fig 8. In the paper [75], the 

risk assessment for the ideal AM strategy in the power distribution systems uses a fuzzy logic model. They include economic, 
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environmental, safety, regulatory, vulnerability, and risks related to supply quality and supply chain vulnerability. The production 

of inference rules, fuzzification, and defuzzification are the three main working phases of the fuzzy logic system. Here, the AM is 

mainly carried out to estimate the risk variables that could have an impact on the operation system as a whole. 

 

 
Fig 8. Architecture of FL 

 

Looking ahead, a viable path toward improving asset management in power systems is the incorporation of symbolic data into 

machine learning models. Symbolic data, such as operational statuses, maintenance records, and safety codes, encapsulate 

qualitative information that can provide deeper context and insights into the health and performance of power system assets. For 

instance, symbolic data can enhance model predictions by directly incorporating expert knowledge and regulatory standards into 

the analytical process. 

Considering symbolic data requires methodologies capable of interpreting and processing this form of information alongside 

traditional numerical and categorical data. Techniques such as symbolic regression, logic-based AI models, and hybrid approaches 

that combine symbolic reasoning with conventional machine learning could be explored. These methodologies can uncover 

patterns and relationships that purely numerical data might not reveal, leading to more holistic and robust asset management 

strategies. 

 

V. RESULTS AND DISCUSSION 

As shown in Table 1, some of the recent state-of-the-art model approaches used for AM in power systems are reviewed, as well as 

their pros and cons.  

 

Table 1. Comparative analysis between various ML models  

Author 

Name & 

Year 

ML Model Application Description Advantages and 

Disadvantages 

Hu, et al 

[76] 

SVM A real-time 

Transient 

Stability 

Assessment 

(TSA) scheme is 

developed using 

SVM for power 

systems. 

 One of the most crucial methods for 

preventing cascading failures, massive 

blackouts, and transmission line 

instability is real-time TSA.  

• High level of robustness 

• Better speed 

• Incapable for handling 

complex datasets 

• Reduced dependability 

Alimi, et al 

[77] 

MLP-SVM Security in 

power systems. 

A new hybridized classification model 

is developed by integrating the functions 

of standard SVM and MLP to ensure 

security in power systems.  

• Lower error rate 

• Reduced risk 

• System complexity 

• Reduced detection 

efficiency.  

Piryonesi, et 

al [78] 

LR Minimization of 

Quality 

Problems using 

AM.  

The goal is to investigate how various 

algorithms handle the often small and 

poor-quality data sets used in 

infrastructure AM. 

• Accepted accuracy 

• Reliable prediction 

performance 

• Higher error rate 

• Low robustness  

Piryonesi, et 

al [79] 

DT Power system 

data 

management. 

This work intends to perform a proper 

AM using the DT algorithm. 
• Ensured safety 

• Better maintenance 

• Lack of dependability 

• High-risk factors 

Rocchetta, 

et al [7] 

ANN Optimal 

management of 

power grids. 

Here, an ANN-based ML algorithm is 

deployed to perform grid operation and 

maintenance effectively. 

• High training efficiency 

• Better robustness 

• Reduced effectiveness 
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Idrees, et al 

[80] 

Fuzzy logic  Health index 

estimation in 

power systems. 

This paper aims to combine the sub-

modules of fuzzy logic for detecting 

faults in power systems based on the 

health index.  

• It does not require any 

precise inputs for 

processing. 

• Robust in nature. 

• Inaccurate prediction 

results 

Protolinsky, 

et al [81] 

ANN Power AM 

using 

hierarchical 

confinement 

models 

A communication graph has been 

generated for each element in the 

electricity network management system. 

• Imprecise information. 

• Low cost. 

• It supports a wide range of 

operating conditions. 

• Not suitable for large 

applications. 

Tanfilyeva, 

et al [82] 

K-Nearest 

Neighbor 

(KNN) 

Conditional AM 

scheme 

The k-NN classification model based on 

the insulating liquids of power 

transformers has been used to identify 

and detect the faulty condition of power 

transformers. 

• Flexibility. 

• Better classification 

accuracy. 

• It is challenging to compute 

thresholds. 

Mirhosseini, 

et al [83] 

Multi-criteria 

decision-

making model 

Proper AM in 

power system 

networks 

The various AM and maintenance 

tactics applied to the power systems are 

presented. 

• Computational burden. 

• Moderate accuracy. 

• Reduced failure rate. 

• Low time requirement. 

Nyong, et al 

[84] 

Reinforcement 

Learning 

Effective energy 

and AM in 

hybrid systems 

It considers several asset kinds, such as 

generating, multi-storage, and control, 

to enhance energy storage capacity in 

hybrid power generation systems.  

• Low system complexity. 

• Adaptive in nature. 

• Difficult to deploy. 

• High time consumption for 

data training.  

Wang, et al 

[85] 

Ensemble 

learning 

mechanism 

Resilient energy 

system using 

ML 

The authors intend to investigate various 

ML algorithms for power AM. 
• Ensured sustainability. 

• Low computational burden. 

• Lack of security. 

Alzoubi, et 

al [86] 

Standard ML 

models 

AM for smart 

home 

applications 

Here, the different AI-based algorithms 

are studied for proper AM and energy 

management in smart home 

applications.  

• It is not capable of adapting 

to changes in the 

environment. 

• Complexity in handling 

massive dimensional data. 

• Better stability. 

Aguilar, et 

al [87] 

Extreme 

gradient boost 

(XGB) 

Short-term 

forecasting 

using ML 

This paper implements the XGB 

classification model to reduce the 

electricity production cost. 

• Local optimum. 

• It requires to train more 

models for decision 

making. 

• Sensitive to outliers. 

• Moderate accuracy. 

Hossam, et 

al [88] 

Fuzzy Logic 

(FL) technique 

AM for power 

transformer 

Here, the standard fuzzy logic technique 

has been used to perform the lifetime 

assessment of the power transformer. 

• It does not require the exact 

information for prediction. 

• Simple to implement & 

understand. 

• It is not suitable for 

handling imprecise data. 

• Requires human 

interference. 

Majzoobi, et 

al [89] 

Adaptive 

Network Fuzzy 

Inference 

System 

(ANFIS) model 

AM using ML 

for power 

transformers 

The authors intend to predict power 

transformers' life using an ANFIS based 

AM scheme. 

• Highly efficient. 

• Minimized complexity. 

• Suitable for handling large 

data. 

• Error outcomes. 

Li, et al [90] Multi-kernel 

SVM 

Fault diagnosis 

and AM using 

Here, the clustering integrated ML 

model is implemented for fault 

diagnosis in power transformers. 

• Increased training speed. 

• Moderate accuracy. 

• Low efficiency. 
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multi-kernel 

SVM model. 

Cui, et al 

[91] 

Recurrent 

Neural 

Networks 

(RNNs) 

Fault detection 

for condition 

monitoring of 

wind turbines. 

The framework analyzes data from 

supervisory control and data acquisition 

(SCADA) systems, incorporating log 

information and operation data. Log 

events are mapped to specific 

assemblies using the Reliawind 

taxonomy, while RNNs model normal 

behaviors based on operation data. 

Advantages: 

1. Automatic Learning 

2. Enhanced Fault Detection 

3. Real-time Monitoring 

4. Versatile Application 

 

Disadvantages: 

1. Data Requirements 

2. Computational Complexity 

• 3. Interpretability 

Cui, et al 

[92] 

Deep Learning 

with 

Autoencoders 

and Gated 

Recurrent Unit 

(GRU) 

Data-driven 

fault diagnosis 

for high voltage 

equipment 

condition 

monitoring, 

particularly 

power 

transformers. 

The paper aims to develop a data-driven 

fault diagnosis approach utilizing 

operation data to monitor the condition 

of high-voltage equipment, specifically 

power transformers. The study 

incorporates expertise input from 

interviews to enhance asset 

management practices for power 

transformers. The deep learning 

technique is employed in an 

unsupervised manner to model normal 

behaviors and identify underlying 

operational risks. 

Advantages: 

1. Data-Driven Approach 

2. Unsupervised Learning 

3. Key Feature Extraction 

4. Temporal Dependency 

Modeling 

 

Disadvantages: 

1. Data Accessibility 

2. Computational Complexity 

3. Interpretability 

Urrea Cabus 

et al [93] 

Autoencoders Anomaly 

detection for 

wind turbine 

condition 

monitoring. 

The research presents an anomaly 

detection approach based on 

autoencoders for assessing wind turbine 

health and enabling preventative 

maintenance programs. SCADA signals 

serve as the data input for the approach. 

The methodology involves examining 

the differences between the estimated 

values generated by the autoencoder 

models and the measured signals from 

the SCADA system. The Kernel Density 

Estimation is then utilized to determine 

the distribution of the expected output’s 

error. A novel dynamic thresholding 

approach efficiently extracts anomalous 

activity in the data. 

Advantages: 

1. Anomaly Detection 

2. Unsupervised Learning 

3. Distribution-Based 

Analysis 

4. Real-time Alerting 

 

Disadvantages: 

1. Data Quality and 

Availability 

2. Computational Resources 

3. Interpretability 

Cui et al 

[94] 

Autoencoder-

based Anomaly 

Detection 

Method 

Asset 

management 

and preventive 

maintenance 

using condition 

monitoring for 

wind turbines. 

The chapter proposes a novel method for 

asset management (AM) and preventive 

maintenance of wind turbines, 

leveraging condition monitoring. The 

suggested model is based on 

autoencoder-based anomaly detection, 

which tracks the condition of wind 

turbines. The method utilizes 

supervisory control and data acquisition 

(SCADA) signals as input data. It then 

analyzes the discrepancies between the 

SCADA data and the estimated values 

generated by the autoencoder models. 

The distribution of the output error is 

calculated using Kernel Density 

Estimation. 

Advantages: 

1. Enhanced Asset 

Management 

2. Proactive Maintenance 

3. Unsupervised Learning 

4. Statistical Analysis 

 

Disadvantages: 

1. Data Quality and 

Availability 

2. Computational Resources 

3. Interpretability 

Urrea Cabus 

[95] 

Unsupervised 

Feature 

Fault detection 

and 

The paper conducts a comparative 

analysis of various unsupervised feature 

Advantages: 

1. Dimensionality Reduction 
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Extraction 

Techniques and 

Supervised 

Machine 

Learning 

Models 

classification 

over a power 

distributed 

generation 

system. 

extraction techniques and supervised 

machine learning models for fault 

detection and classification in a power-

distributed generation system. The study 

utilizes the modified IEEE 34 bus test 

feeder simulated through PowerFactory 

DigSILENT software. Data analysis is 

performed in Python using three-phase 

voltages and currents collected from the 

simulation. 

2. Enhanced Accuracy 

3. Overfitting and 

Underfitting Prevention 

4. Real-World Application 

 

Disadvantages: 

1. Data Preprocessing 

Complexity 

2. Model Selection 

3. Data Collection and 

Availability 

P. Bangalore 

and L. B. 

Tjernberg 

[96] 

Artificial 

Neural Network 

(ANN) 

Condition 

monitoring of 

gearbox 

bearings in wind 

turbines for 

effective 

predictive 

maintenance. 

The paper introduces a self-evolving 

maintenance scheduler framework for 

the maintenance management of wind 

turbines, specifically focusing on 

gearbox bearings. The goal is to detect 

early indications of possible wear and 

tear in the gearbox bearings to enable 

effective predictive maintenance, 

ultimately reducing the overall 

maintenance cost. The proposed 

approach utilizes an artificial neural 

network (ANN)--based condition 

monitoring method. 

Advantages: 

1. Predictive Maintenance 

2. Real-Time Monitoring 

3. Data-Driven Insights 

4. Scalability 

 

Disadvantages: 

1. Data Quality and 

Availability 

2. Model Complexity 

3. Interpretability 

 

 

Perhaps the most challenging aspect of AM is coming up with predictions with the highest level of accuracy feasible to serve as 

the basis for distribution networks and long-term planning systems. Data-driven intelligent systems (AI) are defined as a collection 

of techniques and algorithms that use approaches from statistics to learn from, project, and make choices that depend on the 

construction of models from a set of data. These techniques embrace deep learning and evolutionary algorithms, which are not 

solely based on the work of data researchers or statistical experts in the past. Using different data-driven intelligence algorithms to 

develop predictive maintenance policies and skills helps to improve scheduled maintenance to avoid breakdowns and safeguard 

associated costs. Before implementing data-driven AI methods, a historical deterioration set of information needs to be gathered. 

Moreover, it is challenging to provide general adaptive maintenance support due to the intricate nature of the numerous assets in 

terms of data sources, knowledge, and information available. To exchange and exploit knowledge in a domain, taxonomy are 

detailed formal descriptions of ideas and attributes of features in a specific domain. This literature review concludes that numerous 

machine learning and deep learning approaches have been established in earlier studies for asset management in power systems.   

Based on the findings, it is evident that most conventional systems suffer from issues related to interpretability, resource collection 

complexity, erroneous consequences, inability to handle large-dimensional data, and high risk. Also, Integrating AI-based 

approaches into existing workflows requires careful planning to avoid operational disruptions. Thus, the proposed work aims to 

create an effective and lightweight learning algorithm for asset management in power systems. 

VI. GREEN GRIDS 

The transition of the electricity grid, often referred to as the "Green Grid," represents a shift towards energy solutions. This shift is 

driven by concerns about climate change and the desire for energy systems. In addition to sustainability, there is also a focus on 

cost-effectiveness and efficient use of resources. In this context, infrastructure asset management technologies provide avenues for 

grid operation and maintenance [97]. Advancements in technology, such as Phasor Measurement Units (PMUs) in transmission 

grids and widespread usage of meters at consumer endpoints, enable the integration of distributed energy resources like solar 

panels, electric vehicles, and energy storage systems [98]. Additionally, artificial intelligence (AI) and machine learning (ML) are 

playing roles in making the grid greener by enabling maintenance, optimizing energy distribution, managing demand-side 

resources effectively, and refining diagnostic assessment techniques used to evaluate insulation quality and predict the lifespan of 

physical assets [99]. Integrating AI and ML in the grid allows for more efficient and effective management of energy resources. 

ML algorithms can analyze large amounts of data collected from PMUs and other sensors to optimize energy distribution and 

detect real-time anomalies. These algorithms can also be used to refine diagnostic assessment techniques, such as evaluating 

insulation quality, which can help predict the lifespan of physical assets [100]. By leveraging AI and ML, the grid can be operated 

more intelligently, improving reliability and efficiency. Additionally, the adoption of modern condition monitoring mechanisms, 

like sensor networks and the subsequent influx of data they generate, has underscored the significance of "Big Data" analysis.  
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VII. DISCUSSION 

An extensive literature review shows that machine learning and deep learning approaches are gaining significant traction in 

addressing various asset management challenges within power systems. Considering the surge in development and interest across 

diverse ML applications, the electric power industry benefits substantially from integrating ML technology. In this study, we 

conducted a comprehensive review of the existing and potential applications of ML in asset management and power system 

protection. Our analysis encompassed a quick overview of machine learning research publications within the power systems 

domain and the popularity of machine learning techniques in the last five years. Various machine learning techniques have been 

thoroughly researched to tackle the technological complexities inherent in different power system application domains. It becomes 

evident that ML becomes an indispensable paradigm shift when substantial amounts of data exhibiting suitable spatial and temporal 

diversity are made available. In such cases, ML intelligence possesses the capability to offer valuable insights and informed 

decisions solely based on the input data, surpassing the limitations of traditional model-based or analytical approaches. 

Additionally, we identified ML’s potential in exploring opportunities in scenarios where certain phenomena remain unidentified 

and conventional modeling methods prove impractical. This paper provides a comprehensive summary of the adopted machine 

learning approaches, outlining the input variables and performance indicators and the associated benefits and drawbacks. Based 

on these justifications, ML can significantly enhance power system protection and condition monitoring, leading to instant 

diagnostics and reduced operating costs while simultaneously prolonging the lifespan of critical electrical components. 

Furthermore, the continuous advancement of sophisticated computing systems and cutting-edge technological progress in the field 

of computing encourages the integration of intricate and computationally demanding algorithms. These innovations effectively 

address various academic and engineering challenges, positioning powerful machine learning technologies as promising tools for 

efficient asset management within power systems. As we conclude this study, it is evident that the application of machine learning 

in power systems holds immense potential for future research prospects. Embracing this technology promises to enhance asset 

management practices further, thereby optimizing power system operations and contributing to a more sustainable and reliable 

energy landscape. By continuously exploring and harnessing the capabilities of ML in the power sector, we can truly unlock novel 

opportunities to shape the future of efficient asset management in power systems. AI has made it possible for advanced asset 

management to more effectively interpret business objectives into decisions concerning the acquisition of assets, analytics for 

tracking the performance of assets, forecasting and restricting operations, planning the supply chain, replacement components 

optimization, and final stages of life asset management. 

Integrating AI-based AM systems into existing infrastructure and workflows at scale presents several challenges, including 

ensuring data quality and availability, seamless integration with legacy systems, scalability, security, and privacy, and addressing 

the skill gap among the workforce. To overcome these hurdles, organizations can adopt a multifaceted approach. First, establishing 

robust data governance frameworks can enhance data quality, while modular and API-driven integration strategies can facilitate 

the incorporation of AI functionalities into existing systems without significant disruptions. Scalability can be achieved through 

cloud computing and scalable AI architectures, ensuring the system can handle growing operational demands. Addressing security 

and privacy concerns is critical, requiring the implementation of robust security protocols and adherence to regulatory standards 

to protect sensitive data. Finally, addressing the skill gap by investing in training programs for existing employees and fostering 

partnerships with educational institutions can equip the workforce with the necessary skills for AI implementation. By tackling 

these challenges head-on, organizations can effectively integrate AI-based asset management systems, improving efficiency and 

decision-making without adding undue complexity to operations. 

VIII. CONCLUSION 

The overall review of the study indicates that AM has become a crucial component in the ever-changing electric power market 

environment. The power industry constantly changes due to environmental, socioeconomic, and technical variables. This study 

focused on transmission and distribution assets, including power converters, grids, security protocols, intermediate systems, and 

structural components. It also extensively explored various ML strategies and their respective benefits and drawbacks. The 

significance of maintenance tasks and adherence to asset management guidelines were underscored as crucial elements in ensuring 

electrical equipment's functioning stability and lifespan prediction. These factors play a vital role in enhancing the overall 

efficiency of power system networks.  

While this study focused on exploring the potential of ML, for future research, applying machine learning algorithms alongside 

appropriate asset management policy frameworks holds the promise of achieving optimal asset management and system 

performance. Moreover, we discover that deep learning methods present a viable path for power system applications due to their 

reduced complexity and increased efficiency. The power industry can benefit from enhanced asset management procedures and 

enhanced decision-making processes by utilizing deep learning capabilities. To support the power sector in its goal of efficient 

asset management, we must keep investigating and developing ML-based strategies. By doing this, we can ensure sustainable, 

dependable, and effective energy networks for the future while fostering resilient power systems that satisfy the changing demands 

of a changing world. 

There are several interconnected issues facing the electrical industry AM in light of rising temperatures, aging infrastructure, 

and growing dependability needs. These include:  

• Need for prioritizing assets to maximize performance while limiting costs and risks across the entire energy production, 

distribution, and dissemination chain. 
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• A notable rise of in asset management. 

• Restricted human and financial assets. 

• Potential advantages of the use of new techniques existing in the current state-of-the-art to assist asset management.  

To resolve these problems, a detailed assessment of the influence of Industry 4.0 tools on the AM of electrical industries can be 

conducted. It is evident that the following are the primary tools that would enable the energy generator, transmission supplier, and 

power suppliers to apply an integrated AM model and surpass AM issues:  

• Computerized modeling and training of the whole intricate reliability of the system, which takes into account. 

• The remaining life expectancy of getting older supplies. 

• Failure planning. 

• Adverse conditions and resilience to disturbances. 

• The predictive maintenance techniques are integrated. 

• Machine learning algorithms based on appropriately structured data from these three functions' apparatus and systems are 

integrated to enhance simulation models. 

• Assets are ranked depending on the safety index calculation's use of suitable methods. 

These components can concentrate resources on vital infrastructure and machinery while limiting the use of limited assets. In the 

future, we plan to prioritize the maintenance tasks by optimizing asset replacement using simulation models.  
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